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SECTION A

Answer ALL the questions.






(10 x 2 = 20)

1. Define least upper bound of a poset.

2. Define a Lattice.

3. What are the logic operators?

4. Construct a phrase structure grammar for the language 
[image: image1.wmf]{,/1}

nn

Labn

=³

.

5. Define context-sensitive language.

6. For a DFA 
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show that the string 011011 is in L(M)

7. State the Pigeon hole principle.

8. Draw the Hasse diagram for the divisors of 32.

9. Define a bipartite graph with an example.

10. Prove that every cyclic group is abelian.

SECTION B

Answer ALL the questions.






(5 x 8 = 40)

11. (a) Prove that the complement 
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of any element ‘a’ of a Boolean algebra is uniquely determined.            Prove also that the map 
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 is an anti – automorphism of period 
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 2 and 
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 satisfies                 (a ( b)( = a( ( b(, (a ( b)( = a( ( b(, a(( = a.

(or)

     (b) Discuss ‘negation’ and explain a method of constructing the truth table for P ( (Q and (P ( Q) ( (P

12. (a) Write a short note on principal conjunctive normal form and construct an equivalent formula             for (
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(or)

(b) For a grammar 
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 where P consists of the following production:
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Then show that
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13. (a) Let L be a set accepted by a non-deterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L



(or)

(b) (i) Construct an equivalent deterministic automaton for a given non-deterministic automaton
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    (ii) If R and S are equivalence relations on the set X, prove that R ( S is also an equivalence relation on X.

14. (a) Prove that the equivalence relation ~ defined on the set A decomposes the set A into mutually disjoint equivalence classes.

 (or)

(b) (i) A computer password consists of a letter of the alphabet followed by 3 or 4 digits. Find the total number of passwords that can be formed and the number of passwords in which no digit repeats.

(ii) Find the minimum number of students in a class to be sure that four out of them are born in the same month.

15. (a) (i) Prove that a subgroup N of a group G is a normal subgroup of G iff the product of two left cosets of N in G is again a left coset N in G.

(ii) Define ring with an example.

(or)

(b) Prove that the following statements are equivalent for a connected graph G. 

(i) G is Eulerian 

(ii) Every point of G has even degree 

(iii) The set of edges of G can be partitioned into cycles.

SECTION C

Answer any TWO questions.





(2 x 20 = 40)

16. (a) Explain conditional and bi-conditional connectives with an example. 

(b) Define a Non – Deterministic Finite automata. 



       

(c) For the non deterministic finite automaton
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give the transition table and show that 0100110 is in L (M).

 (10 + 2 + 8)

17. (a) State and prove pumping lemma for regular sets.

(b) List any four applications of pumping lemma.

(c) Prove that if 
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 is also one-to-one onto and 
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 (10 + 4 + 6)

18. (a)
Show that in a graph G, any u – v walk contains a u – v path.

(b) Prove that a closed walk of odd length contains a cycle.

(c) State and prove Lagrange theorem.




       (4 + 4 + 12)
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